THE EXT-ALGEBRA OF A GOLOD RING

Gunnar SJÖDIN

Docentbacken 3, S-104 05 Stockholm, Sweden

Communicated by C. Löfwall Received 25 June 1985

Dedicated to Jan-Erik Roos on his 50-th birthday

Editors note. This article was written nine years ago, but, regretfully, appeared only as two preprints (1976-3 and 1976-6 from University of Stockholm). The presentation is direct and self-contained. The proofs highly depend on computations in the Ext-algebra. There are other, perhaps more elegant, proofs today, but this paper gives a good insight in the theory of Golod rings. Some of the results are used by Löfwall in his contribution to this volume.

Introduction

In the following (R, m) denotes a local noetherian ring with maximal ideal m and residue field **k**. In [9] the Ext-algebra of a local complete intersection is determined. The purpose of this paper is to attack the same problem for Golod rings. It has been shown by Levin (cf. [3, p. 186]) that the Ext-algebra of a Golod ring is finitely generated. We show that it is even finitely *presented*, and, if $R = S/\Omega$, where (S, \mathfrak{p}) is regular and $\mathfrak{p}^{2r-3} \subset \Omega \subset \mathfrak{p}^r$ for some $r \ge 3$, then the relations can be fairly well understood. In the special case $R = S/\mathfrak{p}^r$, where (S, \mathfrak{p}) is regular, we calculate the Ext-algebra exactly and present the result in terms of Lie algebras. In this case the Ext-algebra is generated by its 1- and 2-dimensional elements.

Notations and conventions

We shall use the following symbols, definitions and conventions.

(1) If x is an object assigned some degree, then |x| denotes this degree. In expressions for signs we even drop $|\cdot|$ so we write $(-1)^{a \cdot b}$ instead of $(-1)^{|a| \cdot |b|}$.

(2) If A is a graded algebra over some ring, then the commutator $[\cdot, \cdot]$ is defined by $[a, b] = ab - (-1)^{a \cdot b} ba$. When we study commutators within an indexed subset $\{a_i\}$ of an algebra we put $[a_i, a_i] = a_i^2$ (instead of $2a_i^2$) if a_i is of odd degree.

(3) The sign -1 in a diagram means that the diagram is anti-commutative.

(4) If X is a graded module over a ring, then TX denotes the tensor algebra of

0022-4049/85/\$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

X over this ring. If $\{x_{\alpha}\}$ is a set of elements given some degrees, then $\mathbf{k} \langle \{x_{\alpha}\} \rangle$ is the free non-commutative algebra over \mathbf{k} on the x_{α} 's; i.e., the tensor algebra of the graded vector space with $\{x_{\alpha}\}$ as a basis. By $\mathbf{k}[\{x_{\alpha}\}]$ we mean the free strictly commutative algebra on the x_{α} 's.

(5) If X, Y are complexes over a ring A, then

$$\operatorname{Hom}_{A}(X, Y) = \bigoplus_{n} \prod_{i-j=n} \operatorname{Hom}_{A}(X_{i}, Y_{j})$$

is a complex with differential as in [5, VI 7.6].

(6) Let $P \xrightarrow{\varepsilon} \mathbf{k}$ be a projective resolution of \mathbf{k} . Then

$$H\text{Hom}_R(1, \varepsilon)$$
: $H\text{Hom}_R(P, P) \xrightarrow{=} H\text{Hom}_R(P, \mathbf{k}) = \text{Ext}_R(\mathbf{k}, \mathbf{k})$

and the product in $\text{Ext}_R(\mathbf{k}, \mathbf{k})$ is induced by the composite \circ in $\text{Hom}_R(P, P)$ under this isomorphism (cf. [5]).

1. The minimal resolution of k for a Golod ring

Let (R, \mathfrak{m}) be a local ring and let K be the Koszul complex on a minimal set of generators x_1, \ldots, x_n of \mathfrak{m} . Thus we have a basis T_1, \ldots, T_n of K_1 such that $dT_i = x_i$. Let $|H_iK| = c_{i+1} \ 1 \le i \le n$. We put $c = c_2 + \ldots + c_{n+1}$. Choose a set of cycles z_1, \ldots, z_c in \tilde{K} inducing a basis of $\tilde{H}K$. Such a set will be called a minimal set of cycles. We may assume that $|z_i| < |z_i|$ implies that i < j.

Definition. We say that R is a Golod ring if the set $\{z_i\}_{1 \le i \le c}$ allows Massey operations which are everywhere defined; i.e., if for every finite sequence y_1, \ldots, y_t , where $y_j = z_{i_j}$, there is an element $\gamma(y_1, \ldots, y_t) \in K$ of degree $|y_1| + \ldots + |y_t| + t - 1$ such that

(a) $\gamma(z_i) = z_i$,

(b) $d\gamma(y_1, \dots, y_t) = \sum_{1 \le i \le t-1} (-1)^{y_1 + \dots + y_i + i} \gamma(y_1, \dots, y_i) \cdot \gamma(y_{i+1}, \dots, y_t)$. Note that by induction we get $\gamma(y_1, \dots, y_t) \in \mathfrak{m}K$.

Remark. It may be shown (see e.g. [8]) that the above definition is independent of the choice of the z_i 's.

Now suppose that R is a Golod ring and that the z_j 's and γ are as above. Let V be a graded free R-module with $|V_i| = |H_{i-1}K| = c_i$, $2 \le i \le n+1$. Choose a basis u_1, \ldots, u_c of V corresponding to the z_j 's $(|u_j| = |z_j| + 1)$ and define and R-linear map $\beta: TV \to \mathfrak{m}K \subset K$ by $(w_j = u_{i_j}, y_j = z_{i_j})$.

$$\beta(w_1 \otimes \ldots \otimes w_t) = \gamma(y_1, \ldots, y_t).$$

In particular $\beta(u_i) = z_i$ and β has degree +1. If v_1, \dots, v_t are basis elements of V, then

$$d\beta(v_1 \otimes \dots \otimes v_t) = d\gamma(y_1, \dots, y_t)$$

= $\sum_{1 \le i \le t-1} (-1)^{y_1 + \dots + y_t + i} \gamma(y_1, \dots, y_t) \cdot \gamma(y_{i+1}, \dots, y_t)$
= $\sum_{1 \le i \le t-1} (-1)^{v_1 + \dots + v_t} \beta(v_1 \otimes \dots \otimes v_t) \cdot \beta(v_{i+1} \otimes \dots \otimes v_t)$

and by linear extension the same formula is true for any $v_1, \ldots, v_t \in V$.

Now define $d: K \otimes_R TV \to K \otimes_R TV$ by

$$d(\lambda \otimes v_1 \otimes \dots \otimes v_t) = d\lambda \otimes v_1 \otimes \dots \otimes v_t$$
$$+ (-1)^{\lambda} \lambda \otimes \sum_{1 \le i \le t} \beta(v_1 \otimes \dots \otimes v_i) \otimes v_{i+1} \otimes \dots \otimes v_t$$

where $\lambda \in K$ and $v_j \in V$. Note that $d(K \otimes TV) \subset \mathfrak{m}(K \otimes TV)$ and that $K_0 = R$, $(TV)_0 = R$ give natural imbeddings of V, TV, K in $K \otimes TV$. With these imbeddings we have $d | V = \beta$ and $d | K = d_K$. Now

$$d^{2}(v_{1}\otimes...\otimes v_{t}) = d\sum_{1\leq i\leq t} \beta(v_{1}\otimes...\otimes v_{i})\otimes v_{i+1}\otimes...\otimes v_{t}$$

$$= \sum_{1\leq i\leq t} d\beta(v_{1}\otimes...\otimes v_{i})\otimes v_{i+1}\otimes...\otimes v_{t}$$

$$+ \sum_{1\leq i< j\leq t} (-1)^{v_{1}+...v_{t}-1}\beta(v_{1}\otimes...\otimes v_{i})\cdot\beta(v_{i+1}\otimes...\otimes v_{j})\otimes v_{j+1}\otimes...\otimes v_{t}$$

$$= \left(\sum_{1\leq i\leq t-1} d\beta(v_{1}\otimes...\otimes v_{i})\otimes v_{i+1}\otimes...\otimes v_{t}\right)$$

$$+ \sum_{1\leq i\leq t-1} (-1)^{v_{1}+...+v_{t}-1}\beta(v_{1}\otimes...\otimes v_{t})$$

$$+ \sum_{1\leq i\leq t-1} (-1)^{v_{1}+...v_{t}-1}\beta(v_{1}\otimes...\otimes v_{t})\cdot\beta(v_{t+1}\otimes...\otimes v_{t})$$

The sum of the last two terms is zero and hence

$$d^2(v_1 \otimes \ldots \otimes v_t) = d^2(v_1 \otimes \ldots \otimes v_{t-1}) \otimes v_t = \ldots = d^2 v_1 \otimes v_2 \otimes \ldots \otimes v_t = 0.$$

Thus $d^2 | TV = 0$. Let $\lambda \in K$, $w \in TV$. Then $d(\lambda \otimes w) = d\lambda \otimes w + (-1)^{\lambda} \lambda \otimes dw$. It follows that

$$d^{2}(\lambda \otimes w) = d^{2}\lambda \otimes w + (-1)^{\lambda-1}d\lambda \otimes dw + (-1)^{\lambda}d\lambda \otimes dw + \lambda \otimes d^{2}w = 0.$$

We have established that $K \otimes TV$ is a complex.

Finally we show (cf. [2]):

Theorem 1. With the above definition of d, $K \otimes TV$ is a minimal resolution of k. In particular the Poincaré series $P_R(z) = (1+z)^n/(1-c_2z^2-...-c_{n+1}z^{n+1})$.

Proof. All that remains to prove is that $H_i(K \otimes TV) = 0$ for i > 0 and $H_0(K \otimes TV) = \mathbf{k}$. Let $F_pTV = \bigoplus_{t \le p} V_{i_1} \otimes \ldots \otimes V_{i_t}$ and let $F_p(K \otimes TV) = K \otimes F_pTV$. Then $dF_p(K \otimes TV) \subset F_p(K \otimes TV)$; i.e., $K \otimes TV$ is a regularly filtered complex and $E^0(K \otimes TV) = K \otimes TV$ with $d^0(\lambda \otimes w) = d\lambda \otimes w$ so that $E^1(K \otimes TV) = HK \otimes TV$. Now d^1 is given by

$$d^{1}(\{\lambda\} \otimes v_{1} \otimes \ldots \otimes v_{p}) = \{(-1)^{\lambda} \lambda \cdot \beta(v_{1})\} \otimes v_{2} \otimes \ldots \otimes v_{p}.$$

In particular $d^1(\{1\} \otimes v_1 \otimes \ldots \otimes v_p) = \{\beta(v_1)\} \otimes v_2 \otimes \ldots \otimes v_p$.

However, $V \xrightarrow{\beta} ZK \longrightarrow \tilde{H}K$ maps an *R*-basis of *V* to a **k**-basis of $\tilde{H}K$. It follows that

$$ZE^{1}(K \otimes TV) = (\tilde{H}K \otimes TV) \oplus H_{0}K,$$
$$BE^{1}(K \otimes TV) = d^{1}(H_{0}K \otimes TV) = \tilde{H}K \otimes TV,$$

and hence that $E^2(K \otimes TV) = H_0 K = \mathbf{k}$, which completes the proof. \Box

2. Examples of Golod rings

Let (S, p) be a regular local ring. Basically the only known examples of Golod rings are:

(1) $R = S/p^r$ (cf. [2] or [3] for the equicharacteristic case),

(2) $R = S/x \cdot \Omega$, where $\Omega \subset \mathfrak{p}$ is an ideal and $x \in \mathfrak{p}$ (cf. [8]).

Obviously a ring is a Golod ring if there is a minimal set of cycles z_1, \ldots, z_c such that $z_i \cdot z_j = 0$ for any *i*, *j*. This is the case in the two examples above. We are going to discuss case (1) in some detail and also exhibit a minimal set of cycles for \tilde{K} . Let L be the Koszul complex over S on a minimal set of generators y_1, \ldots, y_n of \mathfrak{p} . We may assume that $r \ge 2$. Put $x_i = \bar{y}_i \in \mathfrak{m} = \mathfrak{p}/\mathfrak{p}^r$. Then x_1, \ldots, x_n is a minimal set of generators of \mathfrak{m} and we may take $K = L \otimes_R S = L/\mathfrak{p}^r L$ as the Koszul complex of R.

Lemma 1. The mapping $d: \mathfrak{p}^{s-1}L_{i+1} \to B_iL \cap \mathfrak{p}^sL_i$ is an epimorphism for $i \ge 0$, $s \ge 1$ and $B_iL \cap \mathfrak{p}^sL_i = Z_i\mathfrak{p}^sL$ for $i \ge 1$.

Proof. Let $a \in B_i L \cap \mathfrak{p}^s L_i$. Then a = db for some $b \in L_{i+1}$. We have b = x + y, where we write x, y as linear combinations of the natural basis elements of L_{i+1} . For x these coefficients are polynomials of degree $\leq s-2$ in the y_j 's and the coefficients of these polynomials lie in $S - \mathfrak{p}$. For y the coefficients are in \mathfrak{p}^{s-1} . Thus $a = dy \in \mathfrak{p}^s L_i$ so that $dx \in \mathfrak{p}^s L_i$. Now dx is a linear combination of the natural basis elements of L_i and the coefficients are polynomials of degree $\leq s-1$ in the y_j 's. The coefficients of these polynomials lie in $S - \mathfrak{p}$. However, since S is regular $\bigoplus_{i\geq 0} \mathfrak{p}^i/\mathfrak{p}^{i+1} = \mathbf{k}[Y_1, \ldots, Y_n]$ the polynomial ring over **k** on the Y_j 's, where Y_j is the image of y_j in $\mathfrak{p}/\mathfrak{p}^2$. It follows that dx = 0 and hence that $d: \mathfrak{p}^{s-1}L \to B_iL \cap \mathfrak{p}^sL_i$ is an epimorphism. Furthermore, if $i \ge 1$, then $H_iL = 0$ so that $Z_i\mathfrak{p}^sL = Z_iL \cap \mathfrak{p}^sL_i = B_iL \cap \mathfrak{p}^sL$. \Box

Lemma 2. We have $Z_i K = B_i K + \mathfrak{m}^{r-1} K_i$ for $i \ge 1$. In particular we may choose a minimal set of cycles in $\mathfrak{m}^{r-1} K$ and hence R is a Golod ring.

Proof. Let $\bar{x} \in Z_i K$, where $x \in L_i$. Then $dx \in \mathfrak{p}^r L_{i-1}$. Thus, according to Lemma 1, dx = dy for some $y \in \mathfrak{p}^{r-1} L_i$. It follows that $x - y \in Z_i L = B_i L$ and hence $\bar{x} = \overline{x-y} + \bar{y}$, where $\overline{x-y} \in B_i K$ and $\bar{y} \in \mathfrak{m}^{r-1} K_i$. \Box

Definition. Let $1 \le i \le n$ and $r \le 2$. Then we put

$$c_{i,r,n} = |H_iK| \qquad (\dim_k(\mathfrak{p}/\mathfrak{p}^2) = n, \ R = S/\mathfrak{p}^r),$$

$$d_{i,r,n} = \binom{r+i-2}{r-1} \binom{r+n-1}{r+i-1},$$

$$e_{i,r,n} = \binom{r+i-2}{r-1} \binom{i-1}{i-1} + \binom{r+i-1}{r-1} \binom{i}{i-1} + \dots + \binom{r+n-2}{r-1} \binom{n-1}{i-1}$$

For the following result, cf. [2].

Lemma 3. We have $c_{i, r, n} = d_{i, r, n} = e_{i, r, n}$.

Proof. Consider the exact sequence

$$0 \to \mathfrak{p}'L \to L \to K \to 0$$

of complexes over S. Since $H_i L = 0$ for $i \neq 0$ and $H_0 L \xrightarrow{\simeq} H_0 K$, the corresponding long exact sequence shows that $H_i K \simeq H_{i-1} \mathfrak{p}^r L$ for $i \ge 1$. We also have an exact sequence

$$0 \to \mathfrak{p}'L \to \mathfrak{p}'^{-1}L \to \mathfrak{p}'^{-1}L/\mathfrak{p}'L \to 0.$$
⁽¹⁾

Note that the differential of $\mathfrak{p}^{r-1}L/\mathfrak{p}^r L$ is zero. Now $d:\mathfrak{p}^{r-1}L_i \to Z_{i-1}\mathfrak{p}^r L$ is an epimorphism for $i \ge 2$ and hence so is $\delta:\mathfrak{p}^{r-1}L_i/\mathfrak{p}^r L_i \to H_{i-1}\mathfrak{p}^r L$ in the long exact sequence of (1). In the same sequence $H_0\mathfrak{p}^{r-1}L \xrightarrow{\simeq} \mathfrak{p}^{r-1}/\mathfrak{p}^r$. It follows that

$$0 \to H_i \mathfrak{p}^{r-1}L \to \mathfrak{p}^{r-1}L_i/\mathfrak{p}^r L_i \to H_{i-1}\mathfrak{p}^r L \to 0$$

is exact for $i \ge 1$. Thus

$$c_{i,r,n} + c_{i+1,r-1,n} = |\mathfrak{p}^{r-1}L_i/\mathfrak{p}^rL_i| = \binom{r+n-2}{n-1}\binom{n}{i}$$

for $1 \le i \le n-1$, $r \ge 3$. On the other hand the same relation is true for $d_{i,r,n}$ and

$$c_{1,r,n} = |H_0 \mathfrak{p}^r L| = |\mathfrak{p}^r / \mathfrak{p}^{r+1}| = \binom{r+n-1}{n-1} = \binom{r+n-1}{r} = d_{1,r,n}$$

for $1 \le n$, $r \ge 2$. By induction $c_{i,r,n} = d_{i,r,n}$ for $1 \le i \le n$, $r \ge 2$. Now

$$e_{i,r,n+1} = e_{i,r,n} + \binom{r+n-1}{r-1} \binom{n}{i-1}$$

for $1 \le i \le n$, $r \ge 2$ and the same formula is true for $d_{i,r,n}$. Furthermore,

$$e_{i,r,i} = \binom{r+i-2}{r-1} = d_{i,r,i}$$

for $1 \le i, r \ge 2$ and hence $e_{i,r,n} = d_{i,r,n} \ 1 \le i \le n, r \ge 2$. \Box

Let A_i be the set of subsequences $a = (a_1, ..., a_i)$ of (1, ..., n) of length *i* and let Qbe the set of sequences $q = (q_1, ..., q_n)$ of non-negative integers such that $q_1 + ... + q_n = r - 1$. let $C_i = \{(a, q) \in A_i \times Q \mid q_j = 0 \text{ for } j > a_i\}$. For $(a, q) \in A_i \times Q$ we put $x_{a,q} = x_1^{q_1} ... x_n^{q_n} T_{a_1} ... T_{a_i}$.

Lemma 4. The set $\{x_{a,q}\}_{(a,q)\in C_i}$ is a minimal set of cycles in K_i for $i \ge 1$.

Proof. Obviously $x_{a,q} \in Z_i K$ for $(a,q) \in C_i$. Let $(a_1,\ldots,a_{i+1}) \in A_{i+1}$. Then

$$d(T_{a_1}...T_{a_{i+1}}) = \sum_{1 \le i \le i+1} (-1)^{i-1} x_{a_i} T_{a_1}...\hat{T}_{a_i}...T_{a_{i+1}}$$

and hence

$$x_{a_{i+1}}T_{a_1}...T_{a_i} \equiv \sum_{1 \le t \le i} (-1)^t x_{a_t}T_{a_1}...\hat{T}_{a_t}...T_{a_{i+1}} \pmod{B_i K}$$

from which it easily follows that $\{x_{a,q}\}_{(a,q)\in C_i}$ generates $Z_i K \pmod{B_i K}$. On the other hand the number of elements in this set is $e_{i,r,n} = |H_i K|$ since

$$\binom{r+i-2+s}{r-1}\binom{i-1+s}{i-1} = \binom{r-1+i+s-1}{i+s-1}\binom{i-1+s}{i-1},$$

which is the number of $x_{a,q}$'s with $a_i = i + s$. We conclude that the set is a minimal set of cycles in K_i . \Box

3. The Ext-algebra of a Golod ring

We keep the notations of Section 1. In this section we want to prove the following result.

Theorem 2. Let R be a Golod ring. Then

$$\operatorname{Ext}_{R}(\mathbf{k},\mathbf{k}) = \mathbf{k} \langle X_{1}, \dots, X_{n}, Y_{1}, \dots, Y_{c} \rangle / ([X_{i}, X_{j}] - \Phi_{i,j}, 1 \le i \le j \le n,$$
$$[X_{i}, Y_{j}] - \Psi_{i,j}, 1 \le i \le n, 1 \le j \le c)$$

where $|X_i| = 1$, $1 \le i \le n$, and $|Y_j| = |z_j| + 1$. The $\Phi_{i,j}$'s and $\Psi_{i,j}$'s are polynomials in the Y_i 's. In particular the Ext-algebra of a Golod ring is finitely presented.

The proof of this theorem will be contained in the following lemmas. Let $P = K \otimes TV$. Note that P has the structure of a differential graded module over the differential graded algebra K.

Lemma 5. (a) Let $f \in \text{Hom}_R(K_1, R)$. Then there is an $F \in Z^1 \text{Hom}_R(P, P)$ such that $F \mid K_1 = f$ and $F(\lambda x) = F(\lambda) \cdot x + (-1)^{\lambda} \lambda F(x)$ for $\lambda \in K$, $x \in P$. (b) Let $g \in \text{Hom}_R(V, R)$. Define $G \in \text{Hom}_R(P, P)$ by

$$G(\lambda \otimes y_1 \otimes \cdots \otimes y_t) = (-1)^{y_t \cdot (\lambda + y_1 + \cdots + y_{t-1})} g(y_t) \lambda \otimes y_1 \otimes \cdots \otimes y_{t-1}$$

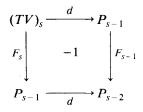
for $\lambda \in K$, $y_j \in V$ (in particular G | K = 0). Then $G \in Z^{|G|} \operatorname{Hom}_R(P, P)$, G | V = g and $G(\lambda x) = (-1)^{\lambda + G} G(x)$ for $\lambda \in K$, $x \in P$.

Proof. (b) By direct checking.

(a) Define F on K by putting

$$F(T_{a_1}\cdots T_{a_j}) = \sum_{1 \le j \le t} (-1)^{j-1} f(T_{a_j}) T_{a_1}\cdots \hat{T}_{a_j} \cdots T_{a_j}.$$

Next define $F_s: P_s \to P_{s-1}$ by induction on s as follows. We already have defined F_1 . Let $s \ge 2$ and suppose that F_i , $1 \le i \le s-1$, has been defined satisfying the requirements. Now choose $F_s: (TV)_s \to P_{s-1}$ such that



which is possible since $dF_{s-1}d = -F_{s-2}dd = 0$ and $(TV)_s$ is free over R. Then define $F_s: K_i \otimes (TV)_{s-i} \rightarrow P_{s-1}$ for $i \ge 1$ by $F_s(\lambda \otimes x) = F(\lambda) \otimes x + (-1)^{\lambda} \lambda \otimes F(x)$ for $\lambda \in K_i$, $x \in (TV)_{s-i}$. Then, using the induction hypothesis and the fact that the differential on P satisfies $d(\mu y) = (d\mu)y + (-1)^{\mu}\mu dy$ for $\mu \in K$, $y \in P$, we get $dF_s(\lambda \otimes x) = F_{s-1}d(\lambda \otimes x)$ so that we may continue the induction to get an $F \in Z^1 \operatorname{Hom}_R(P, P)$ with $F \mid K_1 = f$. Note that if the inductive construction is made as above then $F(\lambda x) = F(\lambda)x + (-1)^{\lambda}\lambda F(x)$ for $\lambda \in K$, $x \in P$. This completes the proof. \Box

Definition. Let $f_i \in \text{Hom}_R(K_1, R)$, $1 \le i \le n$, be given by $f_i(T_j) = \delta_{i,j}$ and $g_i \in \text{Hom}_R(V, R)$, $1 \le i \le c$, by $g_i(u_j) = \delta_{i,j}$. Let $F_i, G_j \in Z\text{Hom}_R(P, P)$ correspond to f_i, g_j as in Lemma 5. Then we put

$$X_i: P \xrightarrow{F_i} P \xrightarrow{\varepsilon} \mathbf{k},$$

$$Y_j: P \xrightarrow{\mathbf{G}_j} P \xrightarrow{\varepsilon} \mathbf{k}.$$

Thus $X_i \in \operatorname{Ext}^1_R(\mathbf{k}, \mathbf{k})$ and $Y_j \in \operatorname{Ext}^{|c_j|+1}_R(\mathbf{k}, \mathbf{k})$.

The following result should be compared with [3, p. 186].

Lemma 6. The X_i 's and Y_j 's together generate $\text{Ext}_R(\mathbf{k}, \mathbf{k})$.

Proof. Let A be the set of subsequences of (1, ..., n) and let B be the set of finite sequences taking values in $\{1, ..., c\}$. Order A by $a = (a_1, ..., a_s) < (a'_1, ..., a'_t) = a'$ if s < t or if s = t and the last non-vanishing $a_i - a'_i < 0$. Order B in the same way and $A \times B$ by (a, b) < (a', b') if b < b' or b = b' and a < a'. For $a = (a_1, ..., a_s) \in A$ we put

 $X^a = X_{a_1} \cdots X_{a_s}, \quad T^a = T_{a_1} \cdots T_{a_s}$ (=1 in both cases if a is empty)

and for $b = (b_1, \ldots, b_s) \in B$ we put

 $Y^b = Y_{b_1} \cdots Y_{b_s}, \quad U^b = u_{b_1} \cdots u_{b_s} \quad (=1 \text{ in both cases if } b \text{ is empty}).$

Then $\{T^a U^b\}_{(a,b) \in A \times B}$ is a well-ordered basis of P. As is easily checked

$$X^{a}Y^{b}(T^{a'}U^{b'}) = \begin{cases} \pm 1 & \text{if } (a,b) = (a',b'), \\ 0 & \text{if } (a,b) > (a',b'). \end{cases}$$

Thus $\{X^a Y^b\}_{(a,b) \in A \times B}$ is expressed by a triangular matrix, with ± 1 's in the diagonal, in the **k**-basis of $\operatorname{Ext}_R(\mathbf{k}, \mathbf{k}) = \operatorname{Hom}_R(P, \mathbf{k})$ dual to $\{T^a U^b\}_{(a,b) \in A \times B}$ and hence $\{X^a Y^b\}_{(a,b) \in A \times B}$ is itself a basis of $\operatorname{Ext}_R(\mathbf{k}, \mathbf{k})$. In particular the X_i 's and Y_j 's generate $\operatorname{Ext}_R(\mathbf{k}, \mathbf{k})$ as an algebra. \Box

Lemma 7. Let $f \in \text{Hom}_R(K_1, \mathbf{k})$, $g \in \text{Hom}_R(V_s, \mathbf{k}) \subset \text{Hom}_R(V, \mathbf{k})$. Then [G, F] annihilates the elements of P_{s+1} which lie in $K_i \otimes TV$ for $i \ge 1$; i.e., everything but possibly $(TV)_{s+1}$, where it coincides with $G \circ F$.

Proof. Let $(TV)^t = \bigoplus V_{i_1} \otimes \cdots \otimes V_{i_i}$. It follows from the definition of G that it annihilates everything in P_{s+1} but possibly $K_1 \otimes V_s$ (note that $V_1 = 0$). Hence the same is true for $F \circ G$. Let $\lambda \otimes x = \lambda x \in P_{s+1}$ where $\lambda \in K_i$, $x \in (TV)^t$. Then $F(\lambda x) = F(\lambda)x + (-1)^{\lambda}\lambda F(x)$ and thus

$$G \circ F(\lambda x) = (-1)^{(\lambda-1) \cdot G} F(\lambda) \cdot G(x) + (-1)^{\lambda+\lambda \cdot G} \lambda \cdot (G \circ F)(x).$$

If $i \ge 1$, then $|x| \le s$ so $(G \circ F)(x) = 0$. If $i \ge 1$ and $t \ge 2$, then G(x) = 0 by the definition of G. If $i \ge 2$, then |x| < s whence $G \circ F(\lambda x) = 0$. Thus $G \circ F(\lambda x) = 0$ but possibly when $i \le 1$ and t = 1; i.e., $G \circ F$ annihilates everything but possibly $K_1 \otimes V_s$ and $(TV)_{s+1}$. Let i = t = 1. Then $G \circ F(\lambda x) = F(\lambda) \cdot G(x) = f(\lambda) \cdot g(x)$ whereas $F \circ G(\lambda x) =$ $F((-1)^{\lambda \cdot G} \lambda \cdot G(x)) = (-1)^{F \cdot G} f(\lambda) \cdot g(x)$; i.e., $[F, G](\lambda x) = 0$ and hence [F, G] is zero on everything in P_{s+1} but possibly $(TV)_{s+1}$. \Box Now $\operatorname{Hom}_R(1,\varepsilon)$: $Z\operatorname{Hom}_R(P,P) \to \operatorname{Hom}_R(P,\mathbf{k}) = \operatorname{Ext}_R(\mathbf{k},\mathbf{k})$ is an epimorphism of algebras (cf. [9]). Thus, with the notations of Lemma 7, $[\varepsilon \circ F, \varepsilon \circ G] = \varepsilon \circ [F,G]$ is zero on everything in P_{s+1} but $(TV)_{s+1}$. However, every element in $\operatorname{Ext}_R^{s+1}(\mathbf{k},\mathbf{k})$ with this property is a polynomial in the Y_j 's since the polynomials in these variables of algebra-degree s+1 must annihilate $K_i \otimes (TV)_{s+1-i}$ for $i \ge 1$. Thus we get

Lemma 8. The commutators $[X_i, Y_i] = \Psi_{i,i}$ are polynomials in the Y_i 's.

Lemma 9. The commutators $[X_i, X_j] = \Phi_{i,j}$ are linear combinations of Y_1, \ldots, Y_{c_2} .

Proof. It suffices to show that $[F_i, F_j](K_2) = 0$ and this follows directly from the construction of the F_i 's on K. \Box

The Lemmas 6, 8 and 9 now show that there is an algebra epimorphism from the algebra Λ on the right hand side of the formula in Theorem 2 to $\text{Ext}_{\mathcal{R}}(\mathbf{k}, \mathbf{k})$. Thus to complete the proof of Theorem 2 it only remains to show that

$$H_{A} \leq H_{\mathrm{Ext}_{R}(\mathbf{k},\mathbf{k})} = H_{\mathbf{k}[X_{1},\ldots,X_{n}]} \cdot H_{\mathbf{k}\langle Y_{1},\ldots,Y_{c}\rangle}$$

where $H_A = H_A(z) = \sum_{i \ge 0} \dim_k A_i z^i$ is the Hilbert series of A, and \leq denotes coefficient-wise inequality. This is a consequence of the following lemma.

Lemma 10. Let C be a connected graded algebra of finite type over a field k and and let $A = \{a_i\}, B = \{b_j\}$ be two finite sets of elements in C of positive degree such that $A \cup B$ generates C as an algebra. Suppose that $[a_i, a_j], [a_i, b_j]$ are polynomials in the b_j 's. Then $H_C \leq H_{k[A]}, H_{k(B)}$.

Proof. Let F_pC be the set of elements in C that may be written as a polynomial in the elements of $A \cup B$ such that the polynomial degree is $\leq p$ in the elements of A. Then the elements $\overline{a_i} \in E_{1, -}^0 C$ and $\overline{b_j} \in E_{0, -}^0 C$ generate $E^0 C$ as an algebra and the $\overline{a_i}$'s strictly commute with each other and with the $\overline{b_j}$'s. Hence we get an epimorphism of algebras

 $v: \mathbf{k}[A] \otimes \mathbf{k} \langle B \rangle \rightarrow E^0 C$

where $v(a_i) = \overline{a_i}$, $v(b_j) = \overline{b_j}$. It follows that $H_C = H_{E^0C} \leq H_{\mathbf{k}[A] \otimes \mathbf{k} \langle B \rangle} = H_{\mathbf{k}[A]} \cdot H_{\mathbf{k} \langle B \rangle}$.

4. The Ext-algebra of R = S/p'

We keep the notations of Section 2. For $(a, q) \in C_i$ we let $u_{a,q} \in V_{i+1}$ be the basis element corresponding to $x_{a,q}$, and we define $g_{a,q} \in \text{Hom}_R(V, R)$ by $g_{a,q}(u_{a',q'}) = \delta_{a,q}^{a',q'}$. Let $G_{a,q} \in \text{Hom}_R(P, P)$ correspond to $g_{a,q}$ as in Lemma 5 and let $Y_{a,q} = \varepsilon \circ G_{a,q}$. Then according to Lemma 6 the X_j 's and $Y_{a,q}$'s generate $\text{Ext}_R(\mathbf{k}, \mathbf{k})$. For $a = (a_1, \dots, a_i) \in A_i$ we put $a' = (a_2, \dots, a_i)$. We order A_i by a < b if the first nonvanishing $a_j - b_j < 0$ and Q in the same way. We order C_i by (a,q) < (b,t) if a < b or if a = b and q < t.

Lemma 11. Let $i \ge 2$ and let $(a, q) \in C_i$. Then

 $[Y_{a',q}, X_{a_1}] = -Y_{a,q} + a$ linear combination of $Y_{b,i}$'s of degree i+1 and with (a,q) > (b,t) + a polynomial in the $Y_{b,i}$'s of degree less than i+1.

Proof. It suffices to show that

$$[G_{a',q}, F_{a_1}]u_{b,t} = \begin{cases} -1 & \text{if } (a,q) = (b,t), \\ 0 & \text{if } (a,q) < (b,t). \end{cases}$$

Let $F = F_{a_1}$, $G = G_{a',q}$ and consider

$$V_{i+1} \xrightarrow{d} K_i$$

$$F \downarrow \qquad -1 \qquad \downarrow F$$

$$V_i + K_i \xrightarrow{d} K_{i-1}$$

We have

$$F(du_{b,t}) = Fx_{b,t} = F_{a_1}x_1^{t_1}\cdots x_{b_t}^{t_t}T_{b_1}\cdots T_{b_t} = \begin{cases} x_{b',t} & \text{if } a_1 = b_1, \\ 0 & \text{if } a_1 < b_1. \end{cases}$$

Thus we may choose

$$Fu_{b,t} = \begin{cases} -u_{b',t} & \text{if } a_1 = b_1, \\ 0 & \text{if } a_1 < b_1. \end{cases}$$

and hence

$$G \circ F(u_{b,t}) = \begin{cases} -1 & \text{if } (a,q) = (b,t), \\ 0 & \text{if } a_1 = b_1 \text{ and } (a,q) \neq (b,t), \\ 0 & \text{if } a_1 < b_1. \end{cases}$$

If (a,q) < (b,t), then $a_1 \le b_1$ and consequently

$$[G, F]u_{b,t} = G \circ F(u_{b,t}) = \begin{cases} -1 & \text{if } (a,q) = (b,t), \\ 0 & \text{if } (a,b) < (b,t). \end{cases}$$

Theorem 3. Let $R = S/\mathfrak{p}^r$. Then $\operatorname{Ext}_R(\mathbf{k}, \mathbf{k})$ is generated by $\operatorname{Ext}_R^1(\mathbf{k}, \mathbf{k})$ and $\operatorname{Ext}_R^2(\mathbf{k}, \mathbf{k})$.

Proof. Using Lemma 11 and the usual argument with triangular matrices we see that the Y_t 's of degree *i*, where $i \ge 3$, may be written as polynomials in the X_j 's and the Y_i 's of degree $\le i-1$.

Remark. It is not always true for a Golod ring that the Ext-algebra is generated by

its 1- and 2-dimensional elements. An example is provided by the Shamash-type (cf. [8]) ring $k[[x, y]]/(x^2y, y^3)$. Then

$$\operatorname{Ext}_{R}(\mathbf{k}, \mathbf{k}) = \mathbf{k} \langle X_{1}, X_{2}, Y_{1}, Y_{2}, Z \rangle / [X_{i}, X_{j}] = 0,$$
$$[X_{i}, Y_{i}] = 0, [X_{1}, Z] = 0, [X_{2}, Z] = [Y_{1}, Y_{2}]$$

where X_1 , X_2 have degree 1, Y_1 , Y_2 degree 2 and Z degree 3. It is easy to see that Z is not generated by elements of lower degree. Note also that this ring provides an example for which the Ext-algebra has non-empty centre and the ring is not a complete intersection.

5. The Y_i 's are in the Lie algebra underlying $Ext_R(\mathbf{k}, \mathbf{k})$

In the following, E stands for $\text{Ext}_R(\mathbf{k}, \mathbf{k})$ and \tilde{PE} for the underlying Lie algebra, cf. [9]. (*Editors note:* Today we often write $\pi(R)$ for \tilde{PE} .)

Let $\hat{T}V$ denote the shuffle algebra on V. Then, as in [1], $\hat{T}V$ is a Hopf Γ -algebra and hence so is $K \otimes \hat{T}V$. The author is indebted to Clas Löfwall, who helped him to finish the proof of the following lemma.

Lemma 12. It is possible to choose $\beta: TV \rightarrow K$ (cf. Section 1) such that $K \otimes \hat{T}V$ becomes a differential graded algebra with divided powers.

Proof. See [4, Proposition 2.4]. \Box

Let Y be the graded vector space generated by the Y_j 's and let LY be the free adjusted Lie algebra on Y (cf. [10]). Now $I(K \otimes \hat{T}V \otimes \mathbf{k}) = D(K \otimes \hat{T}V \otimes \mathbf{k}) \oplus U$, where $V \otimes \mathbf{k} \subset U$. It follows that $Y \subset \tilde{P}E$ (cf. [9] or [10]). Thus there is a homomorphism $LY \rightarrow \tilde{P}E$ in LIE, the category of connected adjusted Lie algebras. It follows easily from Theorem 2 that $TY \rightarrow E$ is a monomorphism and hence so is $LY \rightarrow \tilde{P}E$. Let E^1 be the trivial adjusted Lie algebra with $\operatorname{Ext}^1_R(\mathbf{k}, \mathbf{k})$ as underlying vector space. Then there is an epimorphism $\tilde{P}E \rightarrow E^1$ in LIE and LY is the kernel of this map. Now $\hat{H}_{\tilde{P}E} = H_E = H_{E^1} \cdot H_{TY} = \hat{H}_{E^1} \cdot \hat{H}_{LY} = \hat{H}_{E^1 \oplus LY}$ (see [10] for the definition of \hat{H}) and hence $H_{\tilde{P}E} = H_{E^1 \oplus LY}$. It follows that

$$0 \to L Y \to \tilde{P}E \to E^1 \to 0$$

is an exact sequence in LIE. Thus $LY = \bigoplus_{n \ge 2} \tilde{P}_n E$ and it follows that the $[X_i, X_j]$'s and $[X_i, Y_j]$'s of Theorem 2 are in LY. (Of course, it was clear before that the $[X_i, X_j]$'s are even in Y.)

It also follows from Lemma 12 that $\operatorname{Tor}^{R}(\mathbf{k}, \mathbf{k}) = E(\operatorname{Tor}_{1}^{R}(\mathbf{k}, \mathbf{k})) \otimes_{\mathbf{k}} T(s\tilde{H}K)$ as Γ -algebras. However, this is most easily seen by the fact that both sides are Hopf Γ -algebras, and thus free as Γ -algebras, and since they have the same Hilbert series these Γ -algebras must be isomorphic.

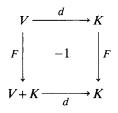
6. Special Golod rings

We say that R is a special Golod ring if there is a minimal set of cycles z_1, \ldots, z_c in \tilde{K} , such that $z_i \cdot z_i = 0$ for any *i*, *j*. Then

$$d(\lambda \otimes v_1 \otimes \cdots \otimes v_t) = d\lambda \otimes v_1 \otimes \cdots \otimes v_t + (-1)^{\lambda} \lambda \cdot \beta(v_1) \otimes v_2 \otimes \cdots \otimes v_t$$

Note that in this case Lemma 12 is trivially true.

Let $f \in \text{Hom}_R(K_1, R)$ and let F have the same meaning as in Lemma 5. We start by choosing $V \xrightarrow{E} V + K$ such that



Then we may write F(v) = F'(v) + F''(v), where $F'(v) \in V$, $F''(v) \in K$. Define $\overline{F}: K \otimes TV \to K \otimes TV$ by

$$\bar{F}(\lambda \otimes v_1 \otimes \cdots \otimes v_t) = F(\lambda) \otimes v_1 \otimes \cdots \otimes v_t + (-1)^{\lambda} \lambda \cdot F''(v_1) \otimes v_2 \otimes \cdots \otimes v_t + (-1)^{\lambda} \lambda \otimes \sum_{1 \le i \le t} v_1 \otimes \cdots \otimes v_{i-1} \otimes F'(v_i) \otimes v_{i+1} \otimes \cdots \otimes v_t.$$

By straightforward computation we get

$$(d\overline{F}+\overline{F}d)(v_1\otimes\cdots\otimes v_t)=(-1)^{v_1-1}(F''v_1\cdot dv_2+dv_1\cdot F''v_2)\otimes v_3\otimes\cdots\otimes v_t.$$

Thus \overline{F} will do as F on TV and (therefore on $K \otimes TV$ according to the proof of Lemma 5) if $dV \cdot F''V = 0$; i.e., if (the minimal cycles) $\cdot F''V = 0$.

We want to establish this property for a class of Golod rings that contains the rings of type $R = S/p^r$ for $r \ge 3$. First we need a lemma.

Lemma 13. Let $R = S/\Omega$, where (S, \mathfrak{p}) is a regular local ring and $\Omega \subset \mathfrak{p}^r$ for some $r \ge 2$. Then $BK \cap \mathfrak{m}^s K = d(\mathfrak{m}^{s-1}K) = \mathfrak{m}^{s-1}BK$ if $s \le r$.

Proof. Let L be the Koszul complex of S. Then $K = L/\Omega L$. Let $\bar{x} \in BK \cap \mathfrak{m}^s K$, where $x \in \mathfrak{p}^s L$ and \bar{x} is its image in K. Then $\bar{x} = d\bar{y}$ and hence $dy - x \in \Omega L \cap \mathfrak{p}^r L$ and since $s \leq r$ it follows that $dy \in \mathfrak{p}^s L$ so that $dy \in BL \cap \mathfrak{p}^s L = d(\mathfrak{p}^{s-1}L)$ by Lemma 1. Thus dy = dz for some $z \in \mathfrak{p}^{s-1}L$ and we get $\bar{x} = d\bar{y} = d\bar{z} \in \mathfrak{m}^{s-1}BK$. \Box

Remark. If we put r = 2 we get Serre's well-known result about the Koszul complex (cf. [7, p. IV-50]).

If Ω above satisfies $\mathfrak{p}^{2r-2} \subset \Omega \subset \mathfrak{p}^r$ one proves exactly in the same way as for S/\mathfrak{p}^r that R is a special Golod ring. This was first noticed by Löfwall (cf. [4]).

Lemma 14. Let $R = S/\Omega$, where (S, \mathfrak{p}) is a regular local ring and $\mathfrak{p}^{2r-3} \subset \Omega \subset \mathfrak{p}^r$ for some $r \ge 3$. Then we may choose F'' such that $dV \cdot F''V = 0$.

Proof. We may assume that $dV \subset \mathfrak{m}^{r-1}K$. Let x be a basis element of V. Then $Fdx \in ZK \cap \mathfrak{m}^{r-1}K$ and Fdx = du + a, where $u \in V$ and $a \in BK$. Now $du \in \mathfrak{m}^{r-1}K$ and hence $a \in BK \cap \mathfrak{m}^{r-1}K = d(\mathfrak{m}^{r-2}K)$. Consequently a = db for some $b \in \mathfrak{m}^{r-2}K$ and we may choose F''x = -b. Therefore we can pick an F'' such that $F''V \subset \mathfrak{m}^{r-2}K$. It follows that $dV \cdot F''V \subset \mathfrak{m}^{r-1}K\mathfrak{m}^{r-2}K = \mathfrak{m}^{2r-3}K = 0$. \Box

Theorem 4. Let R be as in Lemma 14. Then $[X_i, Y_j]$ is a linear combination of the Y_a 's; that is

$$[\cdot, \cdot]: E^1 \otimes Y \to Y.$$

Proof. Let F, G correspond to X_i, Y_j as in Section 3. We may assume that F'' is chosen as in Lemma 14 and hence that $F = \overline{F}$. Thus, if $t \ge 2$

$$G \circ F(TV)_{|G|+1}^t \subset G(TV)_{|G|}^t = 0$$

by the very definition of G. This combined with Lemma 7 completes the proof. \Box

Remark 1. The exponent 2r-3 cannot be improved to 2r-2 as shown by $R = \mathbf{k}[[x, y]]/(x^3, y^3, x^2y^2)$ (r=3, 2r-2=4). Then

$$\operatorname{Ext}_{R}(\mathbf{k}, \mathbf{k}) = \mathbf{k} \langle X_{1}, X_{2}, Y_{1}, Y_{2}, Y_{3}, Z_{1}, Z_{2} \rangle / [X_{i}, X_{j}] = 0, [Y_{j}, X_{i}] = 0, j = 1, 2,$$
$$[Y_{3}, X_{1}] = -Z_{1}, [Y_{3}, X_{2}] = Z_{2}, [Z_{1}, X_{1}] = 0, [Z_{2}, X_{2}] = 0,$$
$$[Z_{2}, X_{1}] = [Z_{1}, X_{2}] = [Y_{2}, Y_{1}]$$

where the Y_i 's and Z_i 's have degree 2 and 3 respectively.

Remark 2. Also the ring in Remark after Theorem 3 has the property that the conclusion of Theorem 4 is false.

Remark 3. Let, for $L \in LIE$, Der L be the derivations of L, in a graded sense, that furthermore satisfy $f(\kappa x) = [f(x), x]$ (see [10]). Then Der L is a sub adjusted Lie algebra of End_k L. Suppose that $L', L'' \in LIE$ and that $\phi: L'' \to Der L'$ is a homomorphism in LIE. Then we define two structure maps on $L' \oplus L''$ as follows

$$[(x', x''), (y', y'')] = ([x', y'] + \phi(x'')(y') - (-1)^{x' \cdot y''} \phi(y'')(x'), [x''y'']),$$

$$\kappa(x', x'') = (\kappa x' + \phi(x'')(x'), x'') \quad \text{for } (x', x'') \text{ of odd degree,}$$

and with this structure we denote it by $L' \oplus_{\phi} L''$, the semi-direct product of L' and L'' via ϕ . Every $f \in \text{Der } L'$ may be uniquely extended to $\overline{f} \in \text{Der } WL'$ (WL', the enveloping algebra of L', treated as an associative algebra) and this gives us a map

$$L'' \xrightarrow{\phi} \text{Der } L' \rightarrow \text{Der } WL' \rightarrow \text{End}_k WL'$$

in LIE and hence an algebra homomorphism

$$\tilde{\phi}: WL'' \to \operatorname{End}_{\mathbf{k}} WL'.$$

Thus WL' is a left WL''-module, and using $\phi(L'') \subset \text{Der } L'$ one checks that the multiplication map $WL' \otimes WL' \to WL'$ is a map of left WL''-modules, and thus we may form the semi-tensor product $WL' \odot_{\tilde{\phi}} WL''$ (cf. [6]). It is not hard to check that $L' \oplus_{\phi} L'' \in \text{LIE}$ and that $W(L' \oplus_{\phi} L'') = WL' \odot_{\tilde{\phi}} WL''$. Let $0 \to L' \to L \to L'' \to 0$ be an exact sequence in LIE. Then, as in the ordinary ungraded case, we see that this sequence splits to the right if and only if L is the semi-direct product of L' and L''. (Note that we have an extra Jacobi identity for adjusted Lie algebras, namely $[x, [x, z]] + [z, \kappa x] = 0$ for x of odd degree.) Now assume that $\psi : L \to \text{End}_k X$ is a representation of $L \in \text{LIE}$ on X, a graded vector space. Every $f \in \text{End}_k X$ can be uniquely extended to $\tilde{f} \in \text{Der } LX$. From this we see that ψ induces a map $\tilde{\psi} \to \text{Der } LX$ in LIE so we may define $LX \oplus_{\tilde{\psi}} L$ and we get $W(LX \oplus_{\tilde{\psi}} L) = TX \odot_{\tilde{\psi}} WL$. Let R be a local ring and let $\tilde{Y} = \bigoplus_{n \geq 2} \tilde{P}_n E$. Then we have an exact sequence in LIE.

$$0 \rightarrow \bar{Y} \rightarrow PE \rightarrow E^1 \rightarrow 0$$

and this splits to the right if and only if the 1-dimensional elements commute (when this happens is described in Theorem 4 of [9]). If R is a Golod ring, then $\bar{Y} = LY$, as was shown in Section 5. Let R be as in Theorem 4. Then we get a representation

$$\psi: E^1 \to \operatorname{End}_{\mathbf{k}} Y$$

of the trivial adjusted Lie algebra E^1 on Y given by $\psi(x) = [x, \cdot]$ (ψ maps the X_i 's on strictly commutative endomorphisms of Y). It follows that $\tilde{P}E = LY \oplus_{\tilde{\psi}} E^1$.

7. The Ext-algebra of $R = S/p^r$ (continued)

We keep the notations of Lemma 4. It is well-known that $\text{Ext}_R(\mathbf{k}, \mathbf{k}) = T(E^1)$ if r = 2 (cf. [3, p. 115]). This also follows from Theorem 3 combined with Theorem 4 of [9].

In the following we assume that $r \ge 3$. It may be shown by the technique used in this paper that the relations in $\text{Ext}_R(\mathbf{k}, \mathbf{k})$ are as follows

$$[Y_{a,q}, X_j] = \sum \lambda_{b,t} Y_{b,t}$$

where $\lambda_{b,i} = \pm 1$ or 0. Precisely, let $(a,q) = (a_1, \dots, a_i; q_1, \dots, q_{a_i})$, then

$$[Y_{a,q}, X_j] = -Y_{(a_1, \dots, j, \dots, a_i; q_1, \dots, q_{a_j})} \text{ if } j \notin a,$$

$$[Y_{a,q}, X_j] = 0 \text{ if } j \in a \text{ and } j \neq a_i,$$

$$[Y_{a,q}, X_{a_i}] = \sum (-1)^{s+i} Y_{(a_1, \dots, a_s, h, a_{s+1}, \dots, a_i, q_1, \dots, q_{h-1}, \dots, q_{a_i}+1),$$

where the sum is over $h < a_i$, $h \notin a$, $q_h \ge 1$.

It is probable that there exists a nicer coordinate-free presentation of this Lie algebra (cf. the not particularly nice presentation of $sl(n, \mathbf{R})$ by generators and relations).

References

- [1] M. André, Hopf algebras with divided powers, J. Algebra 18 (1971) 19-50.
- [2] E.S. Golod, On the homology of some local rings, Soviet Math. 3 (1962) 745-748.
- [3] T.H. Gulliksen and G. Levin, Homology of Local Rings, Queens Papers in Pure Appl. Math. 20 (1969).
- [4] C. Löfwall, On the subalgebra generated by the one-dimensional elements in the Yoneda Extalgebra, in: J.-E. Roos, ed., Algebra, Algebraic Topology, and their Interactions, Lecture Notes in Math. (Springer, Berlin, to appear).
- [5] S. MacLane, Homology (Springer, Berlin, 1967).
- [6] W.S. Massey and F.P. Peterson, The cohomology structure of certain fibre spaces I, Topology 4 (1965) 47-65.
- [7] J.-P. Serre, Algèbre Locale: Multiplicités, Lecture Notes in Math. 11, 3rd ed. (Springer, Berlin, 1975).
- [8] J. Shamash, The Poincaré series of a local ring, J. Algebra 12 (1969) 453-470.
- [9] G. Sjödin, A set of generators for $Ext_R(\mathbf{k}, \mathbf{k})$, Math. Scand. 38 (1976) 1-12.
- [10] G. Sjödin, Hopf algebras and derivations, J. Algebra 64 (1980) 218-229.
- [11] J. Tate, Homology of noetherian rings and local rings, Illinois, J. Math. (1957) 14-27.